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Although dynamic models of differential equations are
typically thought of as the “Rolls-1Royce” of physical sys-
tems modeling, stcad~-state models of algebraic equa-
tions are nonctheless important for conducting various
comprehensive engineering analyses of sensitivity, per-
formance estimations and preventive diagnosis.

In this Paper, we tie together notions of opera-
tionalization, ordering, and aggregation of dependen-
cies 1o construct hicrarchical feedback decompositions
of steady-state, lumped-p aramcter, algebraic equation
models of physical systems. This decomposition allows
us to select and specify at an abstract level the nature
and properties of the algorithing governing how individ-
ual equations are numerically solved. Woc illustrate an
application of this technique for atwo-phase ammonia
thermal controller model and further show that the re-
sulting simulation model is better, faster and cheaper
than conventional siimulation techniques and well-kllowll
equation solving algorithms reviewed in the literature.

1 Simulation as model
operationalization

As a mathematical modeling process [Aris, 1978], con-
structing simulation models of a physical system has in
recent years heen streamlined through automatic tech-
niques for constructing models [Nayak, 1993; Falken-
hainer and Forbus, 1992], simulation programs [Amador
et al., 1 993; Forbus and Falkenhaiuer, 1 992] and diag-
nostic systems (Biswas and Yu, 1993]. In this paper, we
focus on constructing simulation programs for steady-
state models. This problem has a misleading conceptual
simplicity:

Given the algebraic cquations describing  a
steady-state model and numerical values for
constant and input parameters, find numerical
values for themodel paramncters that solve the
model equations.

The problem stems from the lack of a good general-
purpose numerical cquation solving algorithm [Press et
al., 1 992]. T'hercfore, constructing a good siinulation
program often involves a lot of numerical analysis work
to understaud the mathematical properties of the equa-
tions involved and construct a corresponding equation
solver. Inthis Paper, we approach the task of construct-

ing a simulation model as a form of operationalization,
emphasizing performance, validity, and explainability:

Given a set of algebraic equations, produce a
valid, high- performance C program which com-
putes numerical solutions to these equations.

Scction 2 defines our approach this problem as a new
kind of ordering among parameters and equations. Next,
Sce. 3 describes how to niodel feedback. Empirical re-
sults a1 ¢ suminarized in Scc. 4.

2 Algebraic ordering

To efficiently reason about the possible ways to construct
a sitnulistion program for a given set of algebraic cqua-
tions, we define the notion of an algebraic ordering graph
that cajtures how cach parameter of the model alge-
braically depends on the values of other mode] param-
cters viii the algebraic model equations. Qur notion of
algebraic ordering 1 wars close resenblance to the concept
of causal ordering as described in Nayak’s thesis [Nayak,
1993] or Levy’s notion of relevance when applied to mod-
cling [Levy, 1993]. These three notions of ordering share
in commnon a natural r epresentation where an equation,
E: PV = nRT, would yicld the following paramcter-
cquation graph:

where edges indicate that an equation can causaly de-
termine a given parameter (Nayak’s sense), that a pa-
rameter is relevant for the purposes of computing an
cquation i (Levy’s sense). Here, we distinguish between
the fad that an equation equation can be used to com-
pute a parameter value (shown below in solid edges) and
the fact that an equationneeds other parameter values
to perfor m such computations (shown Mow in clashed
cdges)




This alows us to distinguish several ways to numneri-
cally compute parameter values. We say that an cqua-
tion ¢ can directly constrain the value of a parameter p
whene is algebraically solvable with respect to p. Con-
versely, we say that an equation ¢ indirectly constrains
the value of a parameter p when ¢ isnot algebraically
solvable with respect to p. For example, the equation:
y = /@ can directly constrainy for a given z since there
isa unique value of y which satisfies this equation. Con-
versely, this equation indirectly constraing @ for a giveny
since there are only two possible values of o which could
satisfy this equation.

Naturally, it ispreferalle to compute al imodel param-
eters through direct constrainiment. However it, is not
adways possible to do so. Globally, the combinations of
possible direct and indirect constrainmment relationships
among paramcters and equations lead to five different
outcomes, three for paramecters and two for cquations:
1) A parameter inay not have any equation directly con-
straining it,; we say it is under constrained because its
solution value must be guessed as there is no way to
directly compute it. 2) When a parameter is directly
constrained by exactly one equatiori, wc say it is prop-
erly constrained because its value is unambiguously com-
puted by solving a unique equation. 3) When multiple
equations directly constrain the same parameter, we say
it is over constrained because there is no  guarantee that
all such cquations yield the same numerical value unless
other parameters of these equations canbe  adjusted.

Since an equation can only be solved with respect to
at most one parameter, there arc only two possible out-
comes. 1) Anequation of n parameters which constrains
a single paraineter is said to be properly constrained:
givenn — 1 known parameter values, the last one is com-
puted by numerically or algebraically solving the equa-
tion. 2) Ancquation of nparameters which constrains
no parameter is said to be over constrained: there is no
guarantec that the n values found for cach parameter
satisfy the algebraic equation unless some of the param-
cter values can 1rcadjusted.

We have established a validity test for a given set,
of equations and paramecters which determines when a
global set of indirect and direct constrainment relation-
ships is solvable (Sce Ch. 4 in[Rouquette, 1995]). If all
parameters and equations a0 1roperly constrainable,
then a bipartite matching approach like that of Nayak's
would suffice to establish a valid order of computations.
To account for possihle over and urnider constrainment,
we defined an extended bipartite matching algorithm
which ensures that cach case of over constrainment is
balanced by an adequate number of adjustable under-
constrained paramecters thereby resulting in a valid, comn-

putable ordering.

Like Nayak’s causal ordering algorithm [Nayak, 1993],
Algorithm 1 construcis anctwork flow graph F' to match
paramecters and equat ions (Step 1 and 2). Step 3 cre-
ates pat hs between s and ¢ for each exogenous parame-
ter. The key difference with Nayak’s algorithm is inthe
construction of paths corresponding to the possible con-
straimment relationships among equations and parame-
ters: If an equation e, can properly constrain a parame-
ter p;, then there is a path: p; — (:3“"”CL — ¢; in F' (Step
4), Yoicach cquation ¢;, if p;€ P(e;), then there is a
path: p,— cirdirect 0,10 dlow the possibility that ¢;
references Pi (Step 4). Further, since dl flow paths have
unit capacity, the set of all paths p;-» c;.“"m +¢;and
pi = eindireet oo forall p’sand ¢;’s arc mutually ex-
clusive (cither ¢; properly constrains pqor ¢; indirectly
constrains p; ). This property confers to a maximum flow
the meaning of a bipartite matching between the set of
equations and parameters (step 5). Finally, the results of
the mat ching arc used to define the reference and con-
straint cdges of the algebraic ordering: there is a ref-
erence cdge from @ Daraneter p; to an equation ¢; if
pi € P(ej) except when ¢ properly constrains pi, (i.e.,
P; > (f;'”“t — ¢; IS in the solution), in which case there
is a constraint edge frome; to p;. It follows that when
every non-exogenous parameter is properly constrained,
then the algebraic ordering thus constructed is identi-
al to a causal ordering cust ructed by Nayak’s algorithm
as long as cacli equation has a plausible causal inter-
pretation. This proper ty will help distinguish between
physical and algebraic feedback loops later on.

As an example, we consider the following hypothetical
set, of algebraic equations:

er o (7,1, P, 1%) =0
C M _f7(1)2,1)7) = 0
ez o fs(I%, %) =0
eq + fa(Py,5) =0
exs :  cxogenous(ls)
cxg : cxogenous(lg)
7 f7(])47 )07])7): ()
es © Js(I%,1%)=0
In act ual circumstances With limited analytic solvabil-
ity or modeler-imposed restrictions, there may be no per-
fect matching between equations and parameters. Such
is the case for the limitations of analytic solvability of
Fig. 2 which lead the extended bipartite matching al-
gorithm to produce an actual ordering which features
two under-const rained parameters, {2 and P, and their
corresponding over-constrained equations, €2 and eq.
Intuit ively, the extended bipartite matching algorithm
presented above combines the idea of using a perfect
matching between equationus and paramneters as the cri-
teria for validity but allows both direct and indirect com-
putations. Constraint. edges of the forin (e, p) represent
direct computations whereby the value of pis computed
by ¢ as a function of some arguments. Reference edges
of the form (p, ¢) can be seen as indirect computations



Input:

Output:

A paramcter-cquationgraph GG = (V, A)
A predicate: K3 M (e, p) defi ned for ¢ € £ and p ¢ P(c).
1) Create a network flow graph I = (Vy, Af).
2) vV \V/ U{p(lnect ("‘d”ed'(’EJ’}U{S f}
(S and { are respectively the source and sink vertices)
3) Ay = I’y U #y where:
Pr={(s,p)|pe P eap), (exp, n|pE€TA exogenous(p)}
Each path of theforms—»p—»ex, -1
f()ran(-xogcnous parameter p has unit flow capacity and zero cost.
]f‘ (r M, ((’indinect (e t)‘(E]"}
4) The (dgrs between cach pj d]l(‘ the ¢} direct and el vertices are defined
by the edges of the parameter- cquatlon graph accor(lmg to rules below
t and e¢j stands i'fdi"“éj

Exicoded bipartite matching
graph structure

indirect

where €jc st ands for C]{llre

Well-formed ordering
graph structure
cost= 0,
flnv\ Ld[\m ity = |

O O) Q(S) D @

(ml =1
flow capavity = 1

: >\o/ R

oot 1,
flow capacity . 1

5) Apply aminimum cost, maximuin flow algorithmon F°
where the nonzero transhipment nodes arc:
the source, s, with b(s) = |P’]and the sink, ¢, with b(t)o
6) il f(s,1) <|P|thenreturn O
7)  Define the predicate KB3M () from t he maximum flow topology as follows:
78) BM (P, ej, indirect) holds ifl f(F%, eirdireety = 1

)P

8) Returnis BM()

7)) 1BM (1%, e;, divect) holds ifl (P, d""‘) =1

17J

Algorithmn 1: Extended bipartite matching for constructing an algebraic ordering.

Figure 1. Example illustrating the validity of anactual
ordering as an extended form of bipartite matching solv-
able with conventional maximum flow algorithms. The
topology of the maximumn flow is indicated with bold
arrows. All edges have unit capacity.

Figure ?. Algebraic ordering for the 7-equation example.

wherely the value of p is constrained by e aslong as e is
not directly constraining some other parameter. In termns
of matchings, this obscrvation alows us to characterize
the actual valid orderings that are valid as those which
have a perfect matching between the set of paramecters
and equ ations where direct and indirect forms of com-
putation are allowed, Figurce 1 illustrates this idea for
the above example. The figure snows a perfect match-
ing (bold arrows) between parameters and equation con-
straints and references. The perfect matching of Fig. 1
corresponds to the dashed, boxed edges of Fig. 2.

We now are faced with the task of constructing a
procedure to compute all of the parameters of a model
in manner consistent with the algebraic ordering found
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for this modecl. If the algebraic ordering graph were
acyclic, this task would be quite simple but arbitrary di-
rected graphs can have exponentially many cycles. The
next section discusses how certain cycles have a physical
meaning in the notion of feedback.

3 Feedback

Feedback is a property of the interdependencies among
parameters. We capture this notionin Sec. 3.1 and then
proceed to analyzing feedback in Sec. 3,2.

3.1 Parameter Dependency Graph

Definition 1 (Algebraic dependency) A paramcter
p depends oo p, noted by p ~ /', iff there cxists an
equation ¢ such that p € P’(¢) and p' € P(e) (i. e., p and
p' are parameters of ¢) and

EDBM @, e,indirect) V EBM (p/, e, direct ) holds.

Recall from Alg. 1 that KB M (p, e, direct) holds pre-
cisely for an cquation ¢ € ¥ and a parameter p € P(e)
when the value of p will be computed as a closed form
expression of the remaining parameters of c. This is
in contrast to KBM (p, ¢, indirect) which holds for an
cquation ¢ € ¥ and a paramcter P € P(¢) when e s
an algebraic constraint on the possible values that p can
have.

The dependency digraph Gd = (I’d, F2d) correspond-
ing to an algebraic ordering digrapph G’ = (V. =
PUE, 4) isdefined as follows:

cPd={p|peP A -exogenous(p)}
 Vpp'ePd,(p,p')e Ad iff p~yp/

For notation convenience, we say that p ~* p’ when
there exists ascquence of parameters,p=py,.... p,=
p' such that

P=PLroapPr e P17 Py

A s an illustration example,we show in Fig 3 a
schematic diagram of theevaporator loop of a two-phase,

External-Active Thermal Control System (EATCS) de-
signed at McDonuell 1 ))ouglas. Liquid ammonia captures
heat by cvaporation fi om hot sources {e.g., crew cabin
and electronic cquipment) and releases it by condensa-
tion to cold sinks (c.g. dark space). The venturis main-
tain a sufliciently large liquid ammonia flow to prevent
complete vaporization and superheating at the evapo-
raters. The REFMD pump  orchestrates the actual heat
transfer between t he t wo-phase evaporator return and
the condenser loop (not shown).

Figure b shows the parameter dependency graph for
one of the EATCS nodels presented in [Rouquette,
1 995). This mode] has 55 parameters, 18 of which are
exogenous and the remaining 37 arc to be solved with
respect to 37 equations. A brute-force approach to sim-
ulating this model would consist in solving the 37 cqua-
tions for the 37 unknown paramecters. Ambiguities and
the inhcrent inefliciency of this process make this ap-
proach undesirable. We seek to reformulate this brute
force approach iuto a better, faster and cheaper simula-
tion algorithin by abstracting each feedback loop into an
cfficient comput ational unit.

If the parameter de pendency graph were acyclic, pro-
ducing & simulation prograin would be greatly simplified:
we could walk the graph in breadth-first manner and gen-
erate the simulation program from the equations thus en-
countercd. Unfort unrately, dependency graphs are often
cyclic due to feedback.

3,2 Hicrarchical Feedback Decomposition

Int uitively, feedback occurs when there exists at least
two parameters p and 3/ in the dependency graph Gd
such that p ~* p’and p’ ~* p hold in Gd. Feedback is
deseribed by various terms in various scientific disciplines
and cngineering ficlds. Termns such as closed-loop circuit
(as opposed to an open-loop circuit,), circular dependen-
cies, closed-loop control, circular state dependencies, and
state or control feedback are commonly used. Here, we
follow some basic ideas of system theory [Padulo and Ar-
bib, 1974] and concepts of connectedness of graph the-
ory [Even, 1979] to distinguish two types of feedback
structurcs, namely state and control as shown in Fig. 4.

E— S pedbakloop T

Backward

] Backward

Figure 4: Contiect ivity of state and control feedback
loops

In a st ate feedback loop, feedback input parameters,
x, affect the feedback output parameters, y through a
forward circuit,. Inadependency graph, we will have:
@ ~* y. The backward or feedback circuit in turns
makes the inputs 2 dependent on the outputs y, or:




Figure 5: Dependency graph for the EATCS model.
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y ~* x. A control feedback loop is similar to a state
feedback loop for the difference that the feedback cir-
cuit (usually the controller) looks at both the inputs
a and the cutputs y to determine the new inputs, i.e.,
x,y ~*ta.

For example, the structure of the KATCS showed in
Fig. 3isatypical case of a hydraulic stale fecedback loop.
Feedback can also occur at the algebraic level without
any physical closed circuit, involved. Inthe case of the
EATCS, this occurs duc to a combination of modeling
choices resulting in circular dependencics. For example,
Fig. 6 illustrates the hydro-thermal interdependencies in
the EATCS venturi and evaporator legs which combine
to create an algebraic feedback loop.

3.3 Opecrationalizing Feedback

Except for degenerate cascs, afeedback loop must be
solved iteratively for it corresponds to asystein of N> 2
equations in N unknown paramecters. Optimizing the so-
lution quality and its computational cost reguires human
intervention: which equation solving technique should
be used for a given feedback loop? which independent
subsct of paramcters has optimal convergence proper-
ties? While engincers and numcrical analysts arc able to
address such issues, the task of deciding on the decom-
position of the entire model into constituent feedback
loops is comparatively more diflicult. our approach is
a two phasc process.  First, we automatically abstract
the paramecter dependency graph of themodel equations
in terms of hicrarchically nested feedback loops. Then,
WC present this abstract structure to the modeler who in
turn specifies preferences for constr ucting au equation
solver for cach feedback loop.

Theoretically, identifying feedback in an arbitrary
graph is an NP’-complete problem. Fortunately, lumped-
paramecter algebraic models of physical systems arc typ-
ically sparse (due tolumping) and have a low degree
of connectivity (because most physical components have
limited interactions with neighbor components). Com-
bined with the fact that most man-made devices are
often enginecred with closed-lool) control designs, it is
quite common for the corresponding dependency graphs
of suchimodels to be decomposableinterms of feedback
loops. Instead of designing a heuristic program of un-
known capabilitics, wc constructed efficient and systemn-
atic algorithms based on edge and vertex separators.

3.4 Breaking fcedback loops apart,

A strongly-connected component may contain several
connected sub-components interacting in complex ways.
A's each connected sub-component may correspond to a
feedback loop, identifying the constituent feedback loops
of a dependency graph therefore becomes a hierarchical
graph decomposition problem.

At somelevel, we need a criterion for identifying the
primitive forms of feedback, namely state and control
100J)S. Even[Even, 1979] cals a set of edges, 7', an
(0, b) cdge separator if every dirccted path from o tod
passes through at least onc edge of 2. Given astror -
connected co] nponent, consider now searching for the
smallest 7' such that, removing 7' makes the compo-

Nested (CC], separator={ el})

|

leediac k(C2, separ ator: {€2})

e —

o

f—_—————— e

Fe ediark(CO, sep0ar ator = { e, e2})

Figurc i: Minimal (top) versus one-step lookahead (bot-
tom) edge scparator and their corresponding structural
decompositions.  The nested decomposition is inade-
quate because computing v makes v1and v2 interde-
pendent

nent unconnected or breaks it into two or more strongly-
connected subcomponents. For a given pair, a, b, we call
suchasubset 1 a ol/c-step optimal edge separator.’ Fig-
ure 7 illustrates the optimality of such separators for the
purposes of breaking apart a strongly-connected compo-
nent .

With a polynomial-time algorithm for finding one-
step optimal edge separat ors (See [Rouquette, 1995, Ch.
6], wc can now describhe how to hiearchically decom-
posc st1ongly-connected components in terms of feed-
back loops.

W ¢ now have int) oduced suflicient machinery to
present 1 he decomposition and aggregation of dependen-
tics (DA D) algorithm, Alg. 2. Succinctly, this algorithm
solves t 11c feedback vert exproblem for algebraic depen-
dency gr aphs by analyzing the effects on connectivity of
removing one-stepH lookahead optimal edge separators.
Figure 8 will help to illustrate this analysis of separa-
bility: t he first colummn shows the cffects of removing
an edge scparator, the middle coluinn shows the graph

' One- step because we make a single analysis of how
removing, 1" affccts { he strong connectivity 0f the given
subgraph.



ﬁ Alter removing

Beforeremoving ‘17

Acyclic Subpraph (Step 4)
{1
Edge Separator
Age Separator Feedback(sep=T)
(Step?)
Connected Subgraphs

Aggregate(sep=T, comp={ DADCC1).DAD(CC2),. . DAL HCCW))

cCl @D
Q>

(Step 7)

NestedApgrepate(sep=T,comp={DAIXCC1)})

(&dp) @D
)

Apgregate(sep=T1 comp={ DAD(CC1).DAD(CC2),..HADCCn)))

(S1ep8)

Step 9)

Aggregate(sep=TTa,comp={ DADCC.DADCC2),. D AD(CCn)})

Figure 8: 1’ossible decompositions of Alg. 2.

structure prior removal and the right column refers to
the actual steps of the algorithin and the conclusions
made.

Given a grapoh ¢ = (V, A) , weanalyzethe of-
fects of removing an optimal edge scparvator 7' (steps
1 and 2). G’ corresponds to a simple feedback loop,
Feedback(G,sep=1"), when G* = (V, A —7") is no longer
connected (step 3 and 4). Supposc instead that remov-
ing 7" al step 2 did not break the connectivity of G
which means that, CCS has, say, nstrongly-connected
sill)-colli]ollrllt!s, CCy, . ... CC,,. One possibility is that
T is part of a sct. of edges which make all components Of
CCS interconnected together since G it itself strongly
connected. Depending on whether there is only one sub-
component or several, we have the two cases of step
7. This possibility can be casily tested by removing all
edges of every componentin CCS (step 5) and verifying
that the resulting graph is no longer connected (step 7).

Alternatively, 7° can be the scparator for some
strongly-connected sub-component, RCC,of G which
leads to two subcases. If al edges of G belong to either
RCC or some other component, we have the situation
of step 8 where any two sill)-(ol~~1)c)llc~Its of CCS share
at most one edge?in such a way that) G is connected.

If there is at least one edge which dots not belong

21f two coinp onents ¢l and ¢2 shared two or more vertices,
then they would be part. of a larger connected component ¢12.
Then, c12wouldbe part Of CC'S while ¢l and ¢2 oyl 1ot.

to any component. of CCS or to RCC, then wc have
the situation of step 9 where T in fact separated a sub-
component RCC but not the whole graph. In such cir-
cumstances, DAD abst racts each sub-component as a
vertex and searches for an optimal edge separator 7” at
the abstract level. Then, an edge separator for G in-
dependent of the sub-components is extracted from the
base-lcwl edges 7'a that define T'a.

Note t hat the IY AD algorithimn is recursive since each
strongly- connected suly- component of G is further de-
composcd. Notice that when the one-stcl) lookahead op-
timal edge separator produces the empty set (step 1 and
10) or when no decomnposition cau be made without loos-
ing the connectivity a the level of the sub-components
(step 9).the DAD algorithin dots not decompose the
graph at al. 1 nsuch cases, the corresponding equa-
tions of the dependency graph will have to be solved si-
multancously asif tliey were independent algebraic con-
straints. If DAI) manages to recursively decompose the
graph i11to sub-components until the lowest level sub-
components are broken aprart, the resulting hierarchical
decomposition tree provides a computational framnework
to solve subscts of cquat ions simultancously and inte-
grate the results of cach equation solving process to ob-
tain a global solution.

For il lustration, I'ig. 9 shows the 2-level feedback
structur ¢ of thie 01 1ly strongl y-connected component
found in the paramet ex-dependency graph of the EATCS
shown in Fig. 5. Since the hierarchical decompositions
DA | Ymakes may not correspond to the modeler's per-
spective about feedback loops, we designed a hierarchical
preference matching algorithmto guide t he construction
of the final equation-solving program based on the mod-
cler’s kiowledge about physical and algebraic feedback.

3.5 1 lierarchical Preference Matching

Since the DAD algorithim automatically abstracts a de-
pendency graphinto a hicarchy of feedback loops, wc
could stop here and usc this result to construct a simula-
tion program. 111 fact, there are compelling engineering
reasons to involve t he modeler: First, it helps to vali-
date the operationalization process at the abstract level
of feedback loops not only to confirm the modcler’s a-
priori expectations about what feedback loops ought, be
fouud but also to dispell any possible doubts the modeler
may have about the existence of a given feedback 100 p.

Secord, feedlhHack §oreferences provides the modeler
with the ability to fil]jc-tulle how a particular feedback
loop will besimulated including the choice of the equa-
tion agorithm used, t he choice of the parameters used
to monitor convergence and the caculation of theinitial
solution estimates.

Inthe mode] decomposition of Fig. 9, the inner ven-
turi/evaporator feedback loop (FLoopl ) is, by default,
structw ccl with P 1 and f 1 as feedback input and output
paramecters. In fact, ot her parameters of the feedback
could he used instead aslong as they truly are vertex sep-
arators. In the following example, wc show a matching
prefererice where the feedback input has been replaced
by the paramecters:r1liq and riVap.

FLoopl (id 1)




Input: G= (v, A), astrongly-conneccted digraph
Output:  Thehierarchicalfeedback wee (111 1) decompositionof G
1) Let 7" be a one-step optimal edge separator of (f; Return: ComplexFeec back(G) if 7' = @.
2) Remove T fromG: A=A -1
3 et CCS={CCy, . ... CC.} betheremaining strongly-connected co mponents of ¢
4) R cturn: Feedback(G,sep =7')  if CCS = 0.
5) CC'S # @: Remove the edges of cach cot nponent in CCS and restore those of 7’
A=AlT- (LJ."."{J['\CLS A(cc))
6) Let RCCS be the remaining strongly-connected components of G
Aggregate(G,sep =1 ,comp=|J_ ceces DAD( cc)) if RCCS =0 Aans>1,
Ncsting(sep:?',comp'—])/l])((/(' )) if RCCS = @A =1
8) (here, RCC'S must have only one component, RCC)
Return: Aggregate(G,sep _']',comp_U“6 cos PAD(c ) if Ad - A(RCC)=10
9) (there are extrancous edges and vertices besides C'CS and RCC)
Abstract the components of CCS and RCC tack into a new, unique vertex
Let G = (\7, ,;i) be the resulting grap]l' ](*t CCS be the sty ongly connected components of G.
Return: ComplexFeedback(G) if CCS = (. N N
10) Since G is strongly connected, there is only one cornponent, ie., CCS:=={CC}
et T'a be the optimal edge scparator - of cC
Return: ComplexFeedb ack(G) if Ta=0.
Let 7'ac Ad bethe asc-level edges correspondingtod'a .
Return: Aggregate(G,sep =7'a,comp={J D AD(cc), DAD(RCC)))

7) Return:

cc€ CCS

Algorithin 2: 1)Al): Decomposition and Aggregation of Dependencies

Q"“v‘l"'l(mp?&

Ly jPRitot —— e Floopl
‘ Feedforward 1
Feedforwaid Yorward | Y.L .
------------ F AT ) Venturi hydraulics: |
Venluri/livaporator I S (pressure) -> flow g ¢
> leg 1 - £ o . :
(pressure) -> flow Q Pl et fl

| : Evaporalor- - E J
; Hydraulics: 1——;-——: thermo-hygdraulics:
s flow merge { : b

) (heat,flow) -> pressure

Venturi/Evaporator Feq dhack
> leg 2 - ocd ¥ . #
(pressure) flow ¢ R sy
.......... vy nad Ppitot — — Floop2
Fecdforward 1
1,) 1 t' ot' purasisoaFuncdesdai,
P 2 Venturi hydraulics:
I 1 (pressure) -> flow  { ¢
------------------------ p2 o T f2
] RI MD/BPRV Hydrauli 3 N I
* (flow) -> pr T ! Evaporator ‘ J
g s thermo-hydraulics:
Fecdback 1 (heat,flow) -> pressure &

Fee (Ih(lck

Figure 9: Physical and nested algebraic feedback loops.



;3 specification

:structure : State
. inputs "(#[riLliql# #({rivapl#)
routputs *(#[P1]#)

D AGGER will use this specification as long as it
matches one of the feedback loops it found. The match-
ing criteria used consistsin verifying that the the pro-
posed inputs and out} uts are vertex separators for the
feedback loop.

Once the matching is successful, the remnaining part
of the supplied preference information is used to focus
or change the way in which the actual equation-solving
code will 1)e generated.

FLoopl (id 1)
;; operationalization

T type :physical
linput-estimators ‘(#[Return +
Wiload/2/W1Designl#)

convergence-parameters *(#[P11# #[Q1]#)

convergence-threshold ©.001d0

convergence-method :mathC90-dngsol
‘max-iterations 40
:max-transitions i

where convergence-method defines the numerical algo-
rithm to be used and the other attributes describe spe-
cific properties of that algorithm.

4 Comparison of cquation solvers

For this experimental comparison, we chose the best
combination of modeling assumptions for the EATCS
and uscd the best numerical equation solving algorithm
we had available [l,aw’soil ctal., 1994]. For this com-
parison, we constructed three equation solvers: a brute-
force program basced on solving the 37 cquations with
respect to the 37 non-exogenou s parameters; an interme-
diate solver, which solves the 24 equations of the unique
strongly-connected component with respect to their 24
non-exogenous parameter s (See Fig. 10); and a hierarchi-
cal solver, structured according to 1) AGGER’s feedback
decomposition.

SinceDAGGLER structures an cquation solver hicrarchi-
cally in terms of decomposable feedback loops, we have
taken advantage of animplicit dimension reduction gen-
erating the simulation code. Each state feedback loop
of theforn: y = f(x) and & = g(y) can be restarted
as a function: @ — g{(f(2))= o whercz is the only ulI-
1<110W1I paramcter. For the ATCS decomposition shown
in Fig. 9, this paramcter substitution technique yiclds a
dramatic dimension reduction as shown below:

Number of parameters
Loop Before decomposition | After decomposition
“Foop | 10 T
" FLoop?2 10 1 T
Moo |~ 4 T L1

For example, FLoop1, the feedback loop for the first
vent uri/evaporator leg 1S reduced from 10 equations
(EQ18, EQO, EQ22, EQ23, Eq24, EQR5, EQO, EQ2, EQ®4
and EQ35) into a macro function of only onc input, the
estimate of Pl as shown in pscudo-code below:

Exogenous parameters

pi,Phi2,Phil, Lambda?2,Lanbdal, phi,

w2Design,Wlhesign,W2Power , WlPower,

nMotor,deltabitat,Preturn,Opitot,
dp2returnbesign,M2design,
dPlreturnbesign,Mldesign

EQ11,FQ4,EQ3, EQ2,EQL

Parameters to be l
estinated and computed.

i,dpPit: tReturn, Ppitot, f1,£,01,
T1,r1ve;, P1, Tlsat, Wivarm, Wlelf,
11lLiq, Wivapor, £2,02,72,12Vap,
P2,72sat , W2Warn, W2eff, r2liy, WeVapor

(mf. JEQT,EDE,EQ9, D10, EDL 2} .-

|

Simultaneous

Fguation Solver

EQ13,F )14, EQLS, EQ20, EQS, EQ3Y,
ED32,F.122,EQ24,FQ25, EQ3C, B34,
kD23, F018,EQ21,EQ37, FO33, FI26,
EQ28,Fp29,EQ31, EQ36, EQ27,FU19

EQ16,EQ17

suOTSsoxdxs WIOF-PasoTd WoIly
Jousnbes ur pajndwos ATTesTIsumy

Algebraic constraints
on the paramet er val u eg.

End

Figure 10: Structure of the intermedia te equation solver

double residually . ..double xII, double res(] ..)

Pl = x[0]; /* use the current estimate */

/* from P1 calculate f1=*/

if (EQ20_test()) EQ20_true(); else EQ20_false();

EQ18();

EQ25();

if (EQ30_test()) EQ30_true(); else EQ30_false();

if (EQ34_test()) EQ34_true(); else EQ34_false();

if (EQ35_test()) EQ35_true(); else EQ35_false();

if (EQ32_test()) EQ32_true(); else EQ32_false();

EQ23();

EQ220);

/+* from f1, calculate the residual as:
P1l(actual) - Pi(computed from f1) =y

res[0] = CEQ24();

}

The initial estimate of Pl is computed at 10% over
the return pressure, Freturn, an exogenous parameter.
The other feedback loops are automatically encoded in
a similar manner.

Figwme 11 shows a series of plots describing a sct of
20 simulation st ates generated from a combination of an
RFMD pump slow down (Fig. 1]-a), a sudden venturi
clog (Fig. 11-b), and, (o make matters worse, a heat load
increase (Fig. 11-¢). Recall that we arc not simulating
the dynamic response of the EATCS to these anomalous
conditions. instead, we arc simulating a harder prob-
lem that would occur if these anomalies would evolve
slowly over along period of tiine and near steady states
would be observed throughout until a sudden break-
down. Each of the threesolvers computed afull state
prediction starting from the nominal exogenous condi-
tions altered by nMotor, Phii, and WiPower. The resid-
ual error of cach equation solver is shown in Fig. 11-
d. Although it would scein that al three solvers yield
compair able solution accuracy, the brute-force and inter-




mediate solvers did not converge for the last 6 states
where the initial solution estimate (37 and 24 paramc-
ters respectively!) is 100 il from the actual solution.
For al States wherce convergence problems occurred, 100
cquation-solving episodes ywere made before giving up
onthe solution (Fig.11-c) while The hicrarchical solver
managed in a] circumstances to converge on a solution
in aremarkable 6 or 7 equation-solving instances. Trans-
latedin terms of time spent, we sce even stronger differ-
cnces in Fig. 114 sincethe I)rutc-force solver handles
37 cquations and parameters, t he intermediate solver
24, andthe hierarchical solver 1 for the top-level feed-
Lrackloop and 1 for each of the two lower-lcvc] feedback
loops. Other diflerences sSnow  up in the actual simula-
tion results, The combination of the venturi clog, the
significant pumped slow down and the significant, heat
load increase caused the NATCS to overheat for a lack
of liquid ammonia mass flow to transfer all of the heat.
The behavior of the model in this region is extremely ap-
proximate because this is ananomalous condition; there-
fore, only the relative order of magnitude of the results
should be used, not their actual values. Nonctheless, we
note that the Drut(-force cquation solver fals to detect
the overheating condition (1'1 well a »ove 70 degrees) as
shown in Fig. 11 -f. The liquid/vapor ratios predicted by
the three solvers are identical (See Fig. 1 1-g), while the
flow rate predictions arc somewhat inconsistent for the
1 lu{c-force equation solver (Sce Fig. 11 -11).

This experiment pointed out the need of carefully
choosing an initial parameter estimmate for hierarchical
problem solvers. Althoughit is true of every equation
solver that the quality of the solutions obtained islimited
by the quality of initial estimates, this rule applies even
more to hierarchical problem solvers. Indeed, inadequate
estimates can simply sidetrack the hicrarchical equation
solver in ways were it cannotl scarch other alternatives.
The explanation stems from the fact that a Imut,c-force
equation solver has lax guidance and is therefore able to
scarch @ much larger paramcter space than a hicrarchi-
cal solver which has strong guidance and a inuch smaller
parameter space to scarch. These differences are indica-
tive of tradeoffs familiar in numerical analysis. In that
respect, 17AG gk allows the modeler to have a more in-
tuitive understanding about what is being traded: a hier-
archical structure of physical or algebraic feedback loops
against the luxury of scarching alarge parameter space.
For models of hydro-thermodynamics, it is often fruitless
to scarch large parameter spaces 1hecause the number of
independent paramcters is quite small. 1D AGGER repre-
sents one step towards constructing a class of equation
solvers where the parameter spaces being scarch are close
to the space of independent parameters.

The experimental results confirin that using a hierar-
chical decomposition apprroach for equation-solving pro-
duces faster and better results forthe BATCS. 111 other
experiments with these three solvers, we noticed that, the
hierarchical approach is consistently more: cfficient than
the other two approaches. However, the differences in so-
lution accuracy arc morc variecl, sometimes Letter and
so1nctimes worse. 1n this work, we used automatic tech-
niques for recognizing and abstracting feedback loops for

the task of solving algebraic equations. This resulted in
faster, | retter, and cheaprer simulation programs trading
anarrow scarch base (fewer independent parameters) for
greater computational efficiency instead of the conven-
tional approach characterized by a computationally ex-
pansive and broad search base (all equations versus all
paramciers).

The1escarch described in this paper was carried out
in part by the Computer Science Department at the Uni-
versity of Southern Caifornia and by the Jet |'repulsion
Laboratory, California Institute of Technology, under a
contract with the National Acronautics and Space Ad-
ministration.
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Figure 11: Empirical comparison of the three equation solvers for external input conditions (a-c). The quality of
solutions found by 1) AGGER’s hicrarchical solver are generally comparable to those of the other solvers. The few
exceplions where the hicarchical solver yields noticeably 1)etter sol utions t han the other solvers shows that given
identical solution estimates, an adequately structured solver can out perform a non-structured, blind solver (a). The
differences among the three solvers are most visible in terms of their computational costs (€): the hicrarchical solver
clearly outperforms the two others by a wide margin. As long as all solvers converge on the same solution, their
behavior predictions are statistically equivalent (f-h); however, only the hicrarchical solve] correctly predicted the

overheating (f) duce to insufficient cooling power (a-b) for the given heat load (c).




